Grand Challenge
  • Challenges
  • Algorithms
  • Reader Studies
  • Blog Archives
    About Statistics Terms of Service Privacy
  • Help
    AI4Life Microscopy Denoising Challenge Support
     AI4Life Microscopy Denoising Challenge Forum  Email AI4Life Microscopy Denoising Challenge Organizers
    Grand Challenge Support
     Grand Challenge Documentation
  • Sign In
  • Register
  1. Challenges
  2. AI4Life Microscopy Denoising Challenge
  3. Useful Links
AI4Life Microscopy Denoising Challenge Banner
  •   Info
  •   Forum
  •   Leaderboards
  • Statistics
Join
  • 👋 Welcome Page
  • Challenge Details
  • Data Description
  • How To Make A Submission
  • Evaluation And Metrics
  • Useful Links
  • Organizers
  • Challenge Results
  • Late Submission
  • Email organizers
The challenge is now over! Check out the "Challenge results" page. If you want to submit, see the "Late submission" page.

Useful links¶


We recommend checking out the following papers to get familiar with this research field¶
  1. Imaging in focus: An introduction to denoising bioimages in the era of deep learning, Romain F. Laine, Guillaume Jacquemet, Alexander Krull 2021

  2. Noise2Noise: Learning Image Restoration without Clean Data, Jaakko Lehtinen et al. 2018

  3. Noise2Void - Learning Denoising from Single Noisy Images, Alexander Krull, Tim-Oliver Buchholz, Florian Jug 2018

And it’s implementation: https://csbdeep.bioimagecomputing.com/tools/n2v/

  1. Noise2Self: Blind Denoising by Self-Supervision, Joshua Batson, Loic Royer, 2019

  2. Removing Structured Noise with Self-Supervised Blind-Spot Networks, C. Broaddus, A. Krull, M. Weigert, U. Schmidt and G. Myers 2020

  3. An Unsupervised Deep Learning Approach for Real-World Image Denoising, Dihan Zheng, Sia Huat Tan, Xiaowen Zhang, Zuoqiang Shi, Kaisheng Ma, Chenglong Bao 2021

  4. Self2Self With Dropout: Learning Self-Supervised Denoising From Single Image, Y. Quan, M. Chen, T. Pang and H. Ji 2021


Grand Challenge
  • About
  • Challenge Policy & Pricing
  • Support & Documentation
  • Statistics
  • Status
Policies
  • Terms of Service
  • Privacy
Developers
  • API Documentation
  • API Schema
  • Developer Documentation
Sponsors
  • Logo of Amazon Web Services

© 2012-2025